jDeploy 5.1 Release Notes

Table of Contents

Overview
What’s New in 5.1
Platform-Specific Bundles
Automatic Version Cleanup (5.1.1)
Technical Improvements
Bundle Generation Efficiency
NPM Publishing Strategy
File System Management
Migration Guide
Upgrading from 5.0
Best Practices

N OO O O Oy U1 U1 U1 = R

Resources and Support

Overview

jDeploy 5.1 introduces two major features that significantly improve the deployment and
maintenance experience for Java desktop applications. Platform-specific bundle support allows
developers to create optimized distributions that exclude unnecessary platform-specific files,
dramatically reducing download sizes. Additionally, automatic version cleanup ensures that user
systems remain clean by removing outdated application versions during updates.

What’s New in 5.1

Platform-Specific Bundles

jDeploy 5.1 introduces a powerful new feature that allows you to create optimized bundles for each
target platform by excluding unnecessary platform-specific files. This is particularly valuable for
applications that include platform-specific native libraries or resources.

The Problem It Solves

Modern Java applications, especially those using frameworks like Compose Multiplatform or
including native libraries, often bundle platform-specific files for all supported platforms in a single
distribution. This results in:

* Unnecessarily large downloads - Users download files for platforms they’ll never use

* Increased bandwidth costs - Both for developers hosting downloads and users downloading
them

» Slower installation times - Larger bundles take longer to download and extract

Real-World Impact
The impact can be dramatic. For example:

* Compose Multiplatform apps: The People in Space demo drops from 100 MB to 40 MB per
platform

* jDeploy installer itself: Reduced from ~35 MB to ~4 MB using this feature

* Applications with native libraries: Can see 50-70% size reductions per platform

How It Works

Platform-specific bundles allow you to define which files should be included or excluded for each
platform using a familiar .gitignore-style syntax. You can:

* Exclude entire packages - Remove Windows-specific code from Mac bundles

* Use wildcards - Match patterns like .d11 or-win64.so

* Override with keep patterns - Exclude a package but keep specific sub-packages

* Apply global rules - Set exclusions that apply to all platforms

Configuration Methods

Platform-specific bundles can be configured through multiple approaches:

GUI Configuration

The new "Platform-Specific Bundles" tab in the project editor provides an intuitive interface
with sub-tabs for each platform.

[NN] People In Space

Details Splash Screens Filetypes URLs CLI Runtime Args Permissions = Platform-Specific Bundles = Download Page Publish Settings

Platform Bundle Configuration

o Enable Platform-Specific Bundles Fallback to Universal Bundle

A macOS Intel Package: :ploy-demo-peopleinspace-mac-x64
macOS Silicon Package: oy-demo-peopleinspace-mac-arm64
Windows x64 Package: eploy-demo-peopleinspace-win-x64
Windows ARM Package:

Linux x64 Package: ploy-demo-peopleinspace-linux-x64

Linux ARM Package:

Global =~ macOS Intel macOS Silicon Windows x64 Windows ARM Linux x64 Linux ARM

Global patterns applied to all platform bundles

Common recommended patterns for Global

Generated on Sat Sep 13 11:52:25 PDT 2025
JavaFX libraries - jDeploy provides JavaFX runtime
javatx

com/sun/javatx

com/sun/glass

com/sun/prism

/olass.dll

/libglass.dylib

/libglass.so

Jprism_sk.dll

/libprism_x.dylib

/libprism_%.so

Jjavatx_k.dll

/libjavaftx_*.dylib

/libjavaftx_.so

Pattern Syntax

Ignore patterns: com.example.native or /path/to/file Clear Current Tab Add Common Patterns
Keep patterns: lcom.example.native.required (overrides ignore patterns)

Comments: # This is a comment

Wildcards: com.example.* or *.dll

View Download Page Web Preview Publish Build Project
L 4

Figure 1. The Platform-Specific Bundles tab in the project editor

Configuration Files

.jdpignore files use the same syntax as .gitignore:

* .jdpignore - Global patterns for all platforms

* .jdpignore.mac-x64 - Mac Intel specific patterns

* .jdpignore.mac-armb4 - Mac Apple Silicon specific patterns
* .jdpignore.win-x64 - Windows x64 specific patterns

* .jdpignore.win-arm64 - Windows ARM64 specific patterns
* .jdpignore.linux-x64 - Linux x64 specific patterns

* .jdpignore.linux-armb4 - Linux ARM64 specific patterns

Package.json Configuration

Enable and configure platform-specific bundles in your package. json:

"platformBundlesEnabled": true,
“fallbackToUniversal": false,
"packageMacX64": "my-app-macos-intel",
"packageMacArm64": "my-app-macos-silicon”,

"packageWinX64": "my-app-windows-x64",
"packageWinArm64": "my-app-windows-arm64",
"packagelLinuxX64": "my-app-linux-x64",
"packageLinuxArm64": "my-app-linux-armo4"

Pattern Examples

Here are some common patterns you might use:

Exclude Windows DLLs from Mac/Linux bundles:
In .jdpignore.mac-x64, .jdpignore.mac-armb4, .jdpignore.linux-*
*.dl1

/native/windows
com.myapp.windows

Exclude all native libraries except for current platform:

In .jdpignore.mac-armo4
/native/*
I/native/macos-armo4

Remove platform-specific JNI libraries:

In .jdpignore.win-x64
*-darwin.dylib
*-1inux.so

*-arm64.d11

Automatic Version Cleanup (5.1.1)

Starting with jDeploy 5.1.1, the installer now automatically removes old application versions when
installing updates. This addresses a long-standing issue where multiple versions could accumulate
on user systems, consuming unnecessary disk space.

Why This Matters
Previously, each application update would install alongside existing versions, leading to:

* Disk space issues - Multiple versions consuming gigabytes of space
» User confusion - Uncertainty about which version to use

» System clutter - Accumulated files in application directories

How It Works

The automatic cleanup process:
1. During Updates: When installing a new version, the installer identifies and removes previous
versions

2. Preserves User Data: Only application bundles are removed; user preferences and data remain
intact

3. Clean Uninstall: Ensures proper cleanup through the system’s uninstall mechanisms
Configuration

This feature is enabled by default in 5.1.1. If you need to preserve old versions for specific use cases,
you can disable it:

{
"jdeploy": {
"pruneOldVersions": false
}
+
NOTE Before 5.1.1, old versions were never deleted. Starting with 5.1.1, the default

behavior is to delete old versions (pruneOldVersions: true).

Technical Improvements

Bundle Generation Efficiency

The platform-specific bundle system introduces several technical improvements:

 Parallel bundle generation - Different platform bundles can be built simultaneously
* Incremental filtering - Only changed patterns trigger bundle regeneration

* Smart caching - Common files are cached between platform builds

NPM Publishing Strategy

When using platform-specific bundles with npm:

» Separate packages per platform - Each platform publishes to its own npm package

* Automatic fallback mechanism - Can fall back to universal bundle if platform-specific isn’t
available

* Version synchronization - All platform packages maintain version parity

File System Management

The version cleanup feature implements:

» Safe deletion - Verifies file ownership before removal
» Atomic operations - Either completes fully or rolls back

* Cross-platform compatibility - Works correctly on Windows, macOS, and Linux

Migration Guide

Upgrading from 5.0

jDeploy 5.1 is fully backward compatible with 5.0. Existing applications continue to work without
any changes. To take advantage of new features:

Enabling Platform-Specific Bundles

Open your project in the jDeploy GUI

Navigate to the "Platform-Specific Bundles" tab

Enable platform-specific bundles by checking the checkbox
Configure NPM package names for each platform (if using npm)
Add exclusion patterns for each platform

Test locally using jdeploy package

A A

Publish your optimized bundles

Configuring Version Cleanup

For applications updated to 5.1.1, automatic cleanup is enabled by default. No action is required
unless you want to disable it:

{
"jdeploy": {
“pruneOldVersions": false // Only add this if you want to keep old versions
}
}

Best Practices

Platform-Specific Bundle Patterns

Start with aggressive exclusions

Begin by excluding everything platform-specific, then add back what’s needed:

Exclude all native libraries
/native/*

Keep only what this platform needs
I/native/current-platform/

Use package notation for Java packages

Good - excludes the entire package
com.myapp.platform.windows

Also good - using path notation
/com/myapp/platform/windows/

Comment your patterns

Windows-specific UI components (not needed on Mac)
com.myapp.ui.windows

DirectX native libraries
*.dx11.d11
*.dx12.d11

Testing Platform-Specific Bundles

1. Build all platform bundles locally using jdeploy package
2. Compare bundle sizes to verify exclusions are working
3. Test installation on each target platform

4. Verify functionality isn’t affected by exclusions

Resources and Support

» Official Website: https://www.jdeploy.com/
* Download jDeploy: https://github.com/shannah/jdeploy-desktop-gui/releases/latest
* Documentation: https://www.jdeploy.com/docs/manual/

» Platform-Specific Bundles Guide: https://www.jdeploy.com/docs/manual/#platform-specific-
bundles

* GitHub Repository: https://github.com/shannah/jdeploy

* Community Support: GitHub Issues and Discussions

https://www.jdeploy.com/
https://github.com/shannah/jdeploy-desktop-gui/releases/latest
https://www.jdeploy.com/docs/manual/
https://www.jdeploy.com/docs/manual/#platform-specific-bundles
https://www.jdeploy.com/docs/manual/#platform-specific-bundles
https://github.com/shannah/jdeploy

	jDeploy 5.1 Release Notes
	Table of Contents
	Overview
	What’s New in 5.1
	Platform-Specific Bundles
	Automatic Version Cleanup (5.1.1)

	Technical Improvements
	Bundle Generation Efficiency
	NPM Publishing Strategy
	File System Management

	Migration Guide
	Upgrading from 5.0
	Best Practices

	Resources and Support

