jDeploy 5.3 Release Notes

Table of Contents

Overview 1
What’s New in 5.3 1
Dynamic Placeholder Expressions 1
Directory Association Support 6
Bug Fixes 8
Improved JRE Selection for Custom JavaFX Versions 8
Technical Details 9
Placeholder Expression Parser 9
Directory Association Implementation 9
JavaFX JRE Selection 10
Migration Guide 10
Upgrading from 5.2 10
Using Dynamic Placeholders 10
Adding Directory Associations 11
Best Practices 11
Placeholder Expressions 11
Directory Associations 11
Known Issues 11
Resources 12
Overview

jDeploy 5.3 introduces powerful new features for runtime configuration and file handling. This
release adds dynamic placeholder expressions for flexible runtime argument configuration and
directory association support for project-based workflows.

What’s New in 5.3

Dynamic Placeholder Expressions

Applications can now use enhanced placeholder expressions in runtime arguments, enabling
dynamic path construction, environment variable access, and conditional logic without external
configuration files.

New Placeholder Features

Environment Variable Access

Access system environment variables in configuration:

{
"jdeploy": {
"configFile": "{{ env.APPDATA }}/MyApp/config.json"
}
}

Also works in args:

{
"jdeploy": {
"args": [
"-Duser.name={{ env.USERNAME }}"
]
}
}

Coalesce Operator

Provide fallback values when environment variables are not set:

{
"jdeploy": {
"args": [
"-Dconfig.dir={{ env.XDG_CONFIG_HOME ?? path(user.home, '.config') }}"
]
}
}

String Concatenation

Combine literals and variables to build custom values:

{
"jdeploy": {
"args": [
"-Dapp.title={{ 'MyApp - User: ' + env.USERNAME }}"
1
}
}

Cross-Platform Path Function

Construct platform-native paths automatically:

"jdeploy": {
"args": [
"-Ddata.dir={{ path(user.home, 'Documents', 'MyApp') }}"
]
}
}

Produces: - Unix: /Users/john/Documents/MyApp - Windows: C:\Users\john\Documents\MyApp

Path Normalization

Normalize paths with mixed separators:

{
"jdeploy": {
"args": [
"-Dpath={{ normalize('C:/mixed\\slashes/path') }}"
]
}
}

Conditional Blocks

Include arguments conditionally based on environment:

{
"jdeploy": {
"args": [
"{{ if env.DEBUG }}--verbose{{ end }}",
"{{ if env.MODE }}{{ env.MODE }}{{ else }}production{{ end }}"
]
}
}

Available Placeholders

Placeholder Description Example (macOS) Example
(Windows)

{{ user.home }} User’s home directory /Users/john C:\Users\john

{{ executable.path Full path to launcher /Applications/MyApp. C:\Program

1 executable app/Contents/Mac0S/M Files\MyApp\MyApp.ex

yApp e

{{ executable.dir }} Directory containing the /Applications/MyApp. C:\Program
executable app/Contents/Mac0S Files\MyApp

{{ app.path }} Path to application bundle /Applications/MyApp. C:\Program
(macOS) or executable (other app 211es\MyApp\MyApp.ex
platforms)

Placeholder Description Example (macOS)

{{ app.dir }} Directory containing the app ~ /Applications
bundle (macOS) or executable
(other platforms)

{{ env.VARNAME }} Environment variable access {{ env.HOME }}

{{ pathsep }} Platform-specific path separator /

Expression Syntax

Environment Variables
{{ env.VARNAME }} # Access environment variable

{{ env("VARNAME") }} # Function syntax
{{ env("VARNAME", "default") }} # With default value

Coalesce Operator (77)

{{ env.APPDATA ?? user.home }}
{{ env.VART ?? env.VAR2 ?? "fallback" }}

String Concatenation (+)

{{ user.home + "/Documents" }}
{{ "prefix-" + env.USERNAME + "-suffix" }}

Path Function

{{ path(user.home, "Documents", "MyApp") }}
{{ path(env.APPDATA ?? user.home, "MyApp", "config.json") }}

Normalize Function

{{ normalize("C:/path/with\\mixed/slashes") }}
{{ normalize(user.home + "/docs") }}

Conditional Blocks

{{ if env.DEBUG }}debug-mode{{ end }}
{{ if env.DEBUG }}debug-mode{{ else }}release-mode{{ end }}
{{ if user.home }}exists{{ else }}missing{{ end }}

Example
(Windows)

C:\Program
Files\MyApp

{{ env.USERPROFILE
3

\

Use Cases

Platform-Specific Configuration Files

Use placeholders in configFile properties to specify different configuration files per platform:

{
"jdeploy": {
"configFileMac": "{{ path(user.home, 'Library', 'Application Support', 'MyApp',
'config.json') }}",
"configFileWin": "{{ path(env.APPDATA, 'MyApp', 'config.json') }}",
"configFileLinux": "{{ path(env.XDG_CONFIG_HOME ?? path(user.home, '.config'),
'"MyApp', 'config.json') }}"
}
}

Or use a single cross-platform config file with fallbacks:

{
"jdeploy": {
"configFile": "{{ path(env.APPDATA ?? path(user.home, '.config'), "MyApp',
"config.json') }}"
}
}

XDG Base Directory Support

{
"jdeploy": {
"args": [
"-Dconfig.dir={{ env.XDG_CONFIG_HOME ?? path(user.home, '.config") }}"
1
}
}
Multi-Level Fallbacks
{
"jdeploy": {
"args": [
"-Dcache.dir={{ path(env.TMPDIR ?? env.TEMP ?? '/tmp', 'myapp-cache') }}"
]
}
}

Executable-Relative Resources

"jdeploy": {
"args": [
"-Dresource.path={{ path(executable.dir,
]
}
}

.", 'Resources', 'config.xml') }}"

Debug Mode Configuration

{
"jdeploy": {
"args": [
"{{ if env.DEBUG }}--verbose{{ end }}",
"{{ if env.DEBUG }}--log-level=trace{{ else }}--log-level=info{{ end }}"
]
}
}

Backward Compatibility

All existing placeholders continue to work unchanged. Applications using simple placeholders like
{{ user.home }} require no modifications.

Directory Association Support

Applications can now register as handlers for directories and folders, enabling project-based
workflows and workspace management.

Configuration

Add directory associations to package.json:

{
"jdeploy": {
"documentTypes": [
{
"type": "directory",
"role": "Editor",
"description": "Open folder as project"”
}
]
}
}

Configuration Fields

type
Set to "directory"” to indicate a directory association

role (optional)

Either "Editor" or "Viewer". Default: "Viewer"

description (optional)

Human-readable text shown in context menus
icon (optional)

Custom icon path for directory associations
Platform-Specific Behavior

Windows

Creates context menu entries for:

* Right-clicking on folders
* Right-clicking in empty folder space ("Open folder with...")

Registry keys:

» HKEY_CURRENT_USER\Software\Classes\Directory\shell{ProgId}
» HKEY_CURRENT_USER\Software\Classes\Directory\Background\shell{ProgId}

macOS

Registers application to handle folders via CFBundleDocumentTypes:

<key>LSItemContentTypes</key>
<array>

<string>public.folder</string>
</array>

Enables: - Drag-and-drop folders onto application icon - "Open With" context menu for folders

Linux

Adds inode/directory to .desktop file MimeType field:
MimeType=inode/directory;

Provides "Open With" context menu integration in GNOME and KDE.

GUI Editor Support

The jDeploy project editor GUI now includes a directory association panel in the file associations
section with:

Enable/disable checkbox
* Role selection (Editor/Viewer)
* Description text field

e Custom icon browser

Validation for required fields

Use Cases

» IDEs and Code Editors: Open project directories

Build Tools: Execute builds on project folders

» File Managers: Browse directory structures

Archive Tools: Compress/extract folder contents

Project Management: Open workspace directories

Example Configuration

Complete example with both file and directory associations:

{
"jdeploy": {
"title": "My IDE",
"documentTypes": [
{
"extension": "java",
"mimetype": "text/x-java-source",
"editor": true
},
{
"type": "directory",
"role": "Editor",
"description”: "Open as Project",
"icon": "resources/folder-icon.png"
}
]
}
¥

Bug Fixes

Improved JRE Selection for Custom JavaFX Versions

Fixed a minor issue affecting applications that explicitly specify a custom javafxVersion (e.g., to use
early access versions of JavaFX).

Note: This fix only affects applications using the javafxVersion configuration option. The vast
majority of applications that use the JavaFX bundled with the JRE are unaffected.

What Changed

When javafxVersion is specified in package.json, the launcher now ensures that only JREs without
bundled JavaFX are selected. This prevents potential conflicts between the Maven-downloaded
JavaFX version and any JavaFX libraries bundled with the JRE.

{
"jdeploy": {
"javaVersion": "11",
"javafxVersion": "25-ea+29"
}
¥

The launcher will now skip JREs with bundled JavaFX (e.g., "11fxX") and only use JREs without
JavaFX (e.g., "11") when this configuration is present.

Technical Details

Placeholder Expression Parser

» Zero external dependencies (uses only Go standard library)
* Recursive descent parser with operator precedence

* Context caching with sync.0Once for performance

* Comprehensive error handling with descriptive messages

» ~550 lines of Go code with 102 passing tests

Directory Association Implementation

Model Changes

* DocumentTypeAssociation extended to support both files and directories
 Single isDirectory flag differentiates association types
* Unified model for all document type handling

Platform Integration

* Windows: Registry-based context menu integration
* macOS: Info.plist CFBundleDocumentTypes with LSItemContentTypes
e Linux: .desktop file MimeType field

Uninstallation

Directory associations are properly removed during uninstallation on all platforms.

JavaFX JRE Selection

Updated Logic
» findMatchingJREPath now accepts requireNoJavaFX parameter

* When javafxVersion is specified, requireNoJavaFX is set to true
* JRE selection skips "fx" suffix variants when requireNoJavaFX is true

Backward Compatibility

Applications without javafxVersion specified experience no change in behavior.

Migration Guide

Upgrading from 5.2

jDeploy 5.3 is backward compatible with 5.2. No changes are required for existing applications.

Using Dynamic Placeholders

1. Identify configuration values that vary by environment or platform
2. Replace hardcoded paths with placeholder expressions
3. Test on each target platform

4. Consider using if/else/end blocks for platform-specific logic

Before:
{
"jdeploy": {
"args": [
"-Dconfig.path=/Users/john/.config/myapp/config.json"
]
}
}
After:
{
"jdeploy": {
"args": [

"-Dconfig.path={{ path(env.XDG_CONFIG_HOME ?? path(user.home, '.config'),
'myapp', 'config.json') }}"
]
}
+

10

Adding Directory Associations

1. Determine if your application should handle directories
2. Choose appropriate role (Editor for modification, Viewer for read-only)
3. Add directory association to package.json

4. Test on each platform

{
"jdeploy": {
"documentTypes": [
{
"type": "directory",
"role": "Editor",
"description”: "Open folder as workspace"
}
]
}
}

Best Practices

Placeholder Expressions

» Use path() function for cross-platform path construction

Provide fallbacks with 7?7 operator for optional environment variables

Use if/else/end blocks for environment-specific configuration
» Test expressions on all target platforms

» Keep expressions readable - extract complex logic to multiple arguments

Directory Associations

» Use "Editor" role only if application modifies folder contents
» Provide clear, concise descriptions for context menus

» Test with various directory types (empty, large, network)

* Document directory handling behavior for users

* Consider custom icons to distinguish from file associations

Known Issues

» Placeholder expressions are evaluated at launch time only (not runtime)

11

* Only one directory association per application is supported
* macOS sandboxed apps require appropriate entitlements for folder access

* Linux desktop environment support varies (tested on GNOME and KDE)

Resources

» Official Website: https://www.jdeploy.com/
* Download: https://github.com/shannah/jdeploy-desktop-gui/releases/latest

* Documentation: https://www.jdeploy.com/docs/manual/

GitHub Repository: https://github.com/shannah/jdeploy

* Support: GitHub Issues and Discussions

12

https://www.jdeploy.com/
https://github.com/shannah/jdeploy-desktop-gui/releases/latest
https://www.jdeploy.com/docs/manual/
https://github.com/shannah/jdeploy

	jDeploy 5.3 Release Notes
	Table of Contents
	Overview
	What’s New in 5.3
	Dynamic Placeholder Expressions
	Directory Association Support

	Bug Fixes
	Improved JRE Selection for Custom JavaFX Versions

	Technical Details
	Placeholder Expression Parser
	Directory Association Implementation
	JavaFX JRE Selection

	Migration Guide
	Upgrading from 5.2
	Using Dynamic Placeholders
	Adding Directory Associations

	Best Practices
	Placeholder Expressions
	Directory Associations

	Known Issues
	Resources

